TURBOdesign Pumps & Fans
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Pumps & Fans packages
TURBOdesign Compressors & Turbines
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Compressors and Turbines packages...
TURBOdesign Optima
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
TURBOdesign Optima is our automatic optimization package
3D Blade Design
Our turbomachinery design toolkits include one on 3D blade design...
Meanline Design
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Volute/Scroll Geometries
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Multi-Objective Optimization
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Compressors
Test
Fans and Blowers
Test
Pumps and Hydraulic Turbines
Test
High Speed Turbines
Test
Academia
Test
Design Consultancy
Test
Research and Development
Test
Training
Blog
Catch up with the very latest and useful articles
Case Studies
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Consultancy Summaries
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Publication
Browse the latest and previous editions of our publications library
On-Demand Webinar Library
Playback our webinars
White Paper
Browse our white paper library.
The customer, one of the leading suppliers for aerospace companies, asked ADT to carry out the complete aerodynamic design of a radial inflow turbine stage using inverse design approach available through the TURBOdesign Suite software. The turbine is to be used for expanding air to drop its temperature to very low value for a high altitude testing.
The turbine had to be point designed to deliver the right mass flow at right temperature for the given pressure ratio with a limited power delivery. The rated rotational speed is also specified. This represents a closed set of performance constraints.
The design of all the three turbine stage components (inlet volute, stator vane and centrifugal impeller) was performed using TURBOdesign Suite. The preliminary design of the turbine was performed using 1D sizing software TURBOdesign PRE. A 1D design meeting the power with the required exit temperature is obtained. The meridional geometry, blade number and other design inputs required for the blade design software TURBOdesign 1 is provided by TURBOdesign Pre.
An aft loaded nozzle blade has lesser profile losses and thus losses. For a 2D blade, both hub and shroud loading used are identical. A fore loaded hub is to be used for an RIT due to its nature and shroud loading is arrived at based on getting a better flow incidence.
The stator vanes and rotor blades are designed using the inverse blade design software TURBOdesign 1. The inverse design approach ensured that the performance requirements are met with in a couple of design iterations. Even though each component is designed separately, TURBOdesign1 ensured proper matching between the components since it uses the outflow conditions of each component as the inflow boundary conditions for the following one. The matched blade angle of the components made the flow well aligned in the downstream components.
Inlet volute is designed using TURBOdesign Volute which is also an inverse design software. This inverse design approach produced a properly sized volute for the turbine. Fig. 1. above shows the streamlines through the turbine.
CFD analysis of the final design showed that the required mass flow, temperature and power specifications are met. FEA analysis carried out for the rotor blade showed that the maximum stresses in the blade are within allowable stresses for the selected material. Fig. 4. below shows the stress distribution in the impeller. Finally, a CFD based performance map for the turbine stage is produced for 4 different operating speeds.