News / ADT Webinar: Key Advantages of 3D Inverse Design in Turbomachinery Design Process

Date: Wednesday 7th March 2012

Webinar start time 10:00 (San Francisco) | 12:00 (Houston) | 13:00 (New York) | 18:00 (London)

Please click here to register for session one

Session Two:

Date: Wednesday 14th March 2012

Webinar start time 09:00 (London) | 10:00 (Germany) | 14:30 (India) | 17:00 (China) | 18:00 (Japan)

Please click here to register for session two

Short Abstract: Many turbomachinery manufacturers are facing very common commercial drivers such as:

  • Global competition. The need to compete globally means that the company’s products need to be superior in terms of performance, cost and in meeting the customer’s requirements as closely as possible (customized designs).
  • Continual price pressure and margin compression. Important to reduce both manufacturing and developments costs.
  • Reduced time to market. This will help reduce design and development time and hence costs.
  • Requirements to supply customized products. In many applications the customer has strict requirements in terms of performance, operating range and cost.
  • Skills shortages. Many companies face problems in recruiting skilled aerodynamic designers and the time required to train a new graduate engineer in aerodynamic design using conventional design methods is too long and hence considered as an expensive investment.
  • Developments in manufacturing and materials technology.

The method used for design of turbomachinery components has a major impact on the extent a manufacturer can deal with these commercial drivers. Conventional or direct design approach is typically based on some CAD representation of the blade geometry and iterative changes to the geometry using feedback from some form of flow analysis code. The design process relies heavily on the previous experience of the designer, gained over many years. Experienced designers can achieve good performance. But due to the nature of the design process, designers tend to stay within their comfort zones and as a result restrict the design space.

An alternative approach for aerodynamic design is the so-called inverse design method in which the 3D blade geometry is computed for a specified distribution of blade loading and hence pressure distribution. This approach to design provides more direct control over the design process as pressure distribution on the blade controls all the main flow phenomena such as secondary flows, shock losses, tip leakage flow, etc.

In this webinar it will be shown how the inverse design approach can not only help designers to be more in control of the design process but can also help turbomachinery manufacturers to compete effectively given the commercial drivers outlined above.

Please click here to register for session one and here for session two.